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Introduction

We discuss different approaches to the estimation and

identification of smoothing splines ANOVA models:

• The ‘classical’ approach [Wahba, 1990, Gu, 2002], as improved

by Storlie et al. [ACOSSO];

• the recursive approach of Ratto et al. [2007], Young [2001] [SDR].
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Introduction: ACOSSO

‘a new regularization method for simultaneous model fitting

and variable selection in nonparametric regression models in the

framework of smoothing spline ANOVA’.

COSSO [Lin and Zhang, 2006] penalizes the sum of component

norms, instead of the squared norm employed in the traditional

smoothing spline method.

Storlie et al. introduce an adaptive weight in the COSSO penalty

allowing more flexibility in the estimate of important functional

components (using heavier penalty to unimportant ones).
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Introduction: SDR

Using the the State-Dependent Parameter Regression (SDR)

approach of Young [2001], Ratto et al. [2007] have developed a

non-parametric approach very similar to smoothing splines, based

on recursive filtering and smoothing estimation [the Kalman Filter,

KF, combined with Fixed Interval Smoothing ,FIS, Kalman, 1960,

Young, 1999]:

• couched with optimal Maximum Likelihood estimation;

• flexibility in adapting to local discontinuities, heavy non-linearity

and heteroscedastic error terms.
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Goals of the paper

1. develop a formal comparison and demonstrate equivalences

between the ‘classical’ tensor product cubic spline approach and

the SDR approach;

2. discuss advantages and disadvantages of these approaches;

3. propose a unified approach to smoothing spline ANOVA models

that combines the best of the discussed methods.
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State Dependent Regressions and smoothing
splines: Additive models

Denote the generic mapping as z(X), where X ∈ [0, 1]p and p is

the number of parameters.

The simplest example of smoothing spline mapping estimation of

z is the additive model:

f(X) = f0 +
p∑

j=1

fj(Xj) (1)
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To estimate f we can use a multivariate smoothing spline

minimization problem, that is, given λ, find the minimizer f(Xk)
of:

1
N

N∑
k=1

(zk − f(Xk))2 +
p∑

j=1

λj

∫ 1

0

[f ′′
j (Xj)]2dXj (2)

where a Monte Carlo sample of dimension N is assumed.

This minimization problem requires the estimation of the p hyper-

parameters λj (also denoted as smoothing parameters): GCV, GML,

etc. (see e.g. Wahba, 1990; Gu, 2002).
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In the recursive approach by Ratto et al. [2007], the additive

model is put into a State-Dependent Parameter Regression (SDR)

form of Young [2001]. Consider the case of p = 1 and z(X) =
g(X) + e, with e ∼ N(0, σ2), i.e.

zk = sk + ek,

where k = 1, . . . , N and sk is the estimate of g(Xk).

The sk is characterized in some stochastic manner, borrowing

from non-stationary time series processes and using the Generalized

Random Walk (GRW) class on non-stationary random sequences

[see e.g. Young and Ng, 1989, Ng and Young, 1990].
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The integrated random walk (IRW) process provides the same

smoothing properties of a cubic spline, in the overall State-Space

(SS) formulation:

Observation Equation: zk = sk + ek

State Equations: sk = sk−1 + dk−1

dk = dk−1 + ηk

(3)

where dk is the ‘slope’ of sk, ηk ∼ N(0, σ2
η) and ηk is independent

of ek.

For the recursive estimate of sk, the MC sample has to be sorted

in ascending order of X, i.e. the k and k − 1 subscripts in (3)

denote adjacent elements under such ordering.
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SDR procedure

1. optimize with ML (via prediction error decomposition [Schweppe,

1965]) the hyper-parameter associated with (3): NVR= σ2
η/σ2.

The NVR plays the inverse role of a smoothing parameter: the

smaller the NVR, the smoother the estimate of sk.

2. Given the NVR, the FIS algorithm yields ŝk|N : the ŝk|N from the

IRW process is the equivalent of f(Xk) in the cubic smoothing

spline model. The recursive procedures also provide standard

errors of the estimated ŝk|N .
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The recursive ML optimization

In the ‘classical’ smoothing spline estimates, a ‘penalty’ is always

plugged in the objective function (GCV, GML, etc.) used to optimize

the λ’s, to limit the ‘degrees of freedom’ of the spline model.

In GCV we have to find λ that minimizes

GCVλ = 1/N ·
∑

k(zk − fλ(Xk))2

(1− df(λ)/N)2
, (4)

where df ∈ [0, N ] denotes the ‘degrees of freedom’ of the spline and

where we have explicitly indicated the dependency on λ in the GCV

formula.
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In the recursive notation just introduced:

GCVNV R = 1/N ·
∑

k(zk − ŝk|N)2

(1− df(NV R)/N)2
. (5)

Without the penalty term, the optimum would always be attained

at λ = 0 (or NV R →∞), i.e. perfect fit.

12



In SDR, however, the penalty is intrinsically plugged in by the

fact that ML estimate is based on the filtered estimate ŝk|k−1 =
sk−1 + dk−1 and not on the smoothed estimate ŝk|N , namely we

find NVR that minimizes:

−2 · log(L) = const +
∑N

k=3 log(1 + Pk|k−1) + (N − 2) · log(σ̂2)

σ̂2 = 1
N−2

∑N
k=3

(zk−ŝk|k−1)
2

(1+Pk|k−1)

(6)

where Pk|k−1 is the one step ahead forecast error of the state ŝk|k−1

provided by the Kalman Filter.
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• ŝk|k−1 is based only on the information contained in [1, . . . , k−1]
while smoothed estimates use the entire information set

[1, . . . , N ].

• a zero variance for ek implies ŝk|k−1 = sk−1+dk−1 = zk−1+dk−1,

i.e. the one step ahead prediction of zk is given by the linear

extrapolation of the adjacent value zk−1.

• the limit NV R →∞ (λ → 0) is not a ‘perfect fit’ situation.
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Equivalence between SDR and cubic spline

To complete the equivalence between the SDR and cubic spline

formulations, we need to link the NVR estimated by the ML

procedure to the smoothing parameters λ.

This is easily accomplished by setting λ = 1/(NVR ·N4).
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In the general additive case (1), the recursive procedure just

described needs to be applied, in turn, for each term fj(Xj,k) =
ŝj,k|N , requiring a different sorting strategy for each ŝj,k|N .

Hence the ‘backfitting’ procedure, as described in Young [2000,

2001], is exploited.

Finally, the estimated NVRj’s can be converted into λj values

and the additive model put into the standard cubic spline form.
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State Dependent Regressions and smoothing
splines: ANOVA models with interaction functions

The additive model concept (1) can be generalized to include

2-way (and higher) interaction functions via the functional ANOVA

decomposition. For example, we can let

f(X) = f0 +
p∑

j=1

fj(Xj) +
p∑

j<i

fj,i(Xj, Xi) (7)
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In the ANOVA smoothing spline context, corresponding

optimization problems with interaction functions and their solutions

can be obtained conveniently with the reproducing kernel Hilbert

space (RKHS) approach (see Wahba 1990). In the SDR context,

an interaction function is formalized as the product of two states

f1,2(X1, X2) = s1 · s2,

each of them characterized by an IRW stochastic process.

19



Hence the estimation of a single interaction term z(Xk) =
f(X1,k, X2,k) + ek is formalized as:

Observation Equation: zk = sI
1,k · sI

2,k + ek

State Equations: (j = 1, 2) sI
j,k = sI

j,k−1 + dI
j,k−1

dI
j,k = dI

j,k−1 + ηI
j,k

(8)

where I = 1, 2 is a multi-index denoting the interaction term under

estimation and ηI
j,k ∼ N(0, σ2

ηI
j
). The two terms sI

j,k are estimated

iteratively by running the recursive procedure in turn.
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• take an initial estimate of sI
1,k and sI

2,k by regressing z with the

product of simple linear or quadratic polynomials p1(X1) · p2(X2)
and set sI,0

j,k = pj(Xj,k);

• iterate i = 1, 2:

– fix sI,i−1
2,k and estimate NV RI

1 and sI,i
1,k using the recursive

procedure;

– fix sI,i
1,k and estimate NV RI

2 and sI,i
2,k using the recursive

procedure;

• the product sI,2
1,k · s

I,2
2,k obtained after the second iteration provides

the recursive SDR estimate of the interaction function.
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Unfortunately, in the case of interaction functions we cannot

derive an explicit and full equivalence between SDR and cubic splines

of the type mentioned for first order ANOVA terms. Therefore, in

order to be able to exploit the estimation results in the context of

a smoothing spline ANOVA model, we take a different approach,

similarly to the ACOSSO case.
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Very short summary of ACOSSO

Assume that f ∈ F , where F is a RKHS. F can be written as an

orthogonal decomposition F = {1}⊕ {
⊕q

j=1Fj}, where each Fj is

itself a RKHS and j = 1, . . . , q spans over ANOVA terms of various

order. We re-formulate (2) for the general case with interactions as

the function f that minimizes:

1
N

N∑
k=1

(zk − f(Xk))2 + λ0

q∑
j=1

1
θj
‖P jf‖2F (9)

where the q-dimensional vector of θj smoothing parameters needs

to be optimized somehow.
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The COSSO [Lin and Zhang, 2006] penalizes the sum of norms,

which allows to identify the informative predictor terms fj with an

estimate of f that minimizes

1
N

N∑
k=1

(zk − f(Xk))2 + λ

q∑
j=1

‖P jf‖F (10)

using a single smoothing parameter λ. COSSO improves

considerably the problem (9) with θj = 1 and is much more

computationally efficient than the full problem (9) with optimized

θj’s.
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In the adaptive COSSO (ACOSSO) of Storlie et al., f ∈ F
minimizes

1
N

N∑
k=1

(zk − f(Xk))2 + λ

q∑
j=1

wj‖P jf‖F (11)

where 0 < wj ≤ ∞ are weights that depend on an initial estimate

of f̃ , either using (9) with θj = 1 or the COSSO estimate (10).

The adaptive weights are obtained as wj = ‖P jf̃‖−γ
L2

, with γ = 2
typically and the L2 norm ‖P jf̃‖L2 = (

∫
(P jf̃(X))2dX)1/2.
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Combining SDR and ACOSSO for interaction
functions

Obvious way: the SDR estimates of additive and interaction

function terms can be taken as the initial f̃ used to compute the

weights in the ACOSSO.

However, the SDR identification and estimation provides a more

detailed information about fj terms that is worth exploiting.

We define K〈j〉 the reproducing kernel of an additive term Fj of

the ANOVA decomposition of the space F .
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In the cubic spline case, this is constructed as the sum of two

terms

K〈j〉 = K01〈j〉 ⊕K1〈j〉

where K01〈j〉 is the r.k. of the parametric (linear) part and K1〈j〉
is the r.k. of the purely non-parametric part.
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The second order interaction terms are constructed as the tensor

product of the first order terms, for a total of four elements, i.e.

K〈i,j〉 = (K01〈i〉 ⊕K1〈i〉)⊗ (K01〈j〉 ⊕K1〈j〉)

= (K01〈i〉 ⊗K01〈j〉)⊕ (K01〈i〉 ⊗K1〈j〉)
⊕(K1〈i〉 ⊗K01〈j〉)⊕ (K1〈i〉 ⊗K1〈j〉)

(12)

In general, one should attribute a specific coefficient θ〈·〉 to each

single element of the r.k. of Fj [see e.g. Gu, 2002, Chapter 3], i.e.

two θ’s for each main effect, four θ’s for each two-way interaction,

and so on.
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In fact, each Fj would be optimally fitted by opportunely choosing

weights in the sum of K〈·,·〉 elements.

The SDR estimate ŝI
j of the interaction (8) can be easily

decomposed into the sum of a linear (ŝI
01〈j〉) and non-parametric

term (ŝI
1〈j〉) providing:

ŝI
i · ŝI

j = ŝI
01〈i〉ŝ

I
01〈j〉 + ŝI

01〈i〉ŝ
I
1〈j〉 + ŝI

1〈i〉ŝ
I
01〈j〉 + ŝI

1〈i〉ŝ
I
1〈j〉, (13)

that is a proxy of the four elements of the r.k. of the second order

tensor product cubic spline.
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the optimal use of the SDR identification and estimation in the

ACOSSO framework is to apply specific weights to each element of

the r.k. K〈·,·〉, using the L2 norms of each of the four elements in

(13).
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Examples

Storlie et al. [2008] performed an extensive analysis and

comparison of meta-modelling approaches for the estimation of

total sensitivity indices. Main conclusions:

• simple models like quadratic regressions and additive smoothing

splines can work very well specially for small sample sizes;

• for larger sample sizes, more flexible approaches (MARS,

ACOSSO, MLE GP in particular) can provide better estimation;

• GP does not outperform smoothing methods in estimating

sensitivity indices.
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The present paper does not modify substantially these results on

sensitivity indices estimation; we concentrate here on the forecast

performance ( out-of-sample R2 ).

32



We compared the combined SDR-ACOSSO approach with

ACOSSO and DACE on several examples:

• we checked the behavior of SDR in identifying single 2-way

interaction functions;

• we performed full emulation exercises, considering multivariate

analytic functions

Note: we used Gaussian correlation function in DACE.

Preliminary cross-checks with generalized exponential correlation

function indicate a much better behavior (not shown here): DACE

results presented here may be too ‘pessimistic’ and the comparison

unfair.
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Examples: single surface fitting

Consider surfaces z(X1, X2) = g(X1, X2) + e, with e ∼ N(0, σ),
with signal to noise ratios SNR = V (z)/V (e): very large (SNR >

10), middle (SNR ∼ 3), very small (SNR ∼ 0.1).

Compared SDR, standard GCV estimation and DACE using a

training MC sample X of 256 elements and tested the out-of sample

performance of each method in predicting the ‘noise-free’ signal

g(X1, X2) using a new validation sample X∗ of dimension 256. We

repeated this exercise on 100 random replicas for each function and

each SNR. We considered 9 types of surfaces of increasing order of

complexity (i.e. 27 different surface identification, each replicated

100 times).
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Figure 3: Shape of the surfaces considered
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Only for one out of the nine surfaces, DACE outperformed SDR

or GCV estimation. In the other cases, SDR and GCV gave similar

results, when the four terms in (13) have similar weights, while SDR

was extremely efficient in better identifying surfaces characterized by

different weights. These results suggested that SDR identification

step can provide significant added value in smoothing spline ANOVA

modelling.
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Examples: full emulation

We considered the analytic Sobol’ g-function [Saltelli et al., 2000]

with different dimension p and degree of interaction (denoted as

‘simple’ and ‘nasty’ in Table 1).

We also analyzed a modified version of the Sobol’ g-function,

and two test functions used in Storlie et al..
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We considered a training sample of dimension 256 (or 128) to

estimate the emulators and used a new validation sample of the

same dimension to check the out of sample performance. We

repeated the analysis 100 times for each function and each method

(using LHS).

We also performed analyzes at increasing sample size, from 128

to 1024, using Sobol’ quasi-Monte Carlo sequences.
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method p = 4 ‘simple’ p = 4 ‘nasty’ p = 8 ‘simple’ p = 10 ‘nasty’
SDR-ACOSSO 0.9994 0.8633 0.9928 0.1922

ACOSSO 0.9986 0.7910 0.9163 0.1963
DACE 0.9932 0.8174 0.9715 -0.0247

Table 1: SDR-ACOSSO, ACOSSO and DACE: average R2 (out of

sample) computed on 100 replicas for different types of the Sobol’

g-function.
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Figure 8: Out of sample R2 for the non-additive Example 4 in Storlie
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Conclusions: out-of-sample performance

• SDR is extremely rapid, efficient and accurate in identifying

additive models: recursive algorithms avoid the inversion of large

matrices needed in the other methods (ACOSSO, DACE).

• In ANOVA models with interactions, ACOSSO confirms its good

performances (efficiency and relatively low computational cost).

SDR-ACOSSO improves ACOSSO in many cases, although at the

price of a significantly higher computational cost.

• for additive models the advantage of SDR is in both low

computational cost and of accuracy,
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• when interactions are included the greater accuracy of SDR-

ACOSSO has a cost. SDR-ACOSSO and ACOSSO also compare

very favorably with respect to DACE in many cases, even if

there are cases where DACE outperforms SDR-ACOSSO in out-

of-sample prediction.

• Further comparisons using generalized exponential correlation

function in DACE are in progress: first results indicate a better

performance of DACE w.r.t. present results; still ACOSSO /

SDR-ACOSSO appear competitive.
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Conclusions: computational burden

• SDR (for additive models) and ACOSSO (for models with

interactions) are advisable choices for a rapid and reliable

emulation exercise (when simpler QREG methods fail).

• Should ACOSSO be unable to explain a large part of the mapping,

SDR-ACOSSO or DACE should be taken into consideration.

• DACE is not necessarily the best choice when the model is

supposed to be very complex and with significant interactions:

the interpolation constraint may imply spurious identification of

interaction terms involving unimportant X’s;
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• SDR-ACOSSO can provide detailed information about the form

of each additive and interaction term of a truncated the

ANOVA decomposition, often allowing very good out-of-sample

predictions.
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